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1 Exercise Sheet 1

1.1 Exercise 1 - Examples of Fourier transforms

a Consider the function f € L! (T) defined as the periodization of
fx)=22r—2x). (1)

Calculate the Fourier coefficients of f and use them to prove that

2

!
R

b Let ¢ be a positive real number and v, u € R% Consider the function Jo,v,u in the
space L? (Rd) with d € N defined as

NIY

g

Jo,v,u (X) = (*) e_%|X—V\2+iu~x‘ (3)

™

Then prove that gyvu = €"V"gy-1 4y v, i.c.

d . 4
F [(U) 4 6—g|x—v2+zu-x:| (k) _ (1) * e 2(7|k u?—iu-(k— v) (4)

™ aTm

1.2 Exercise 2 - Properties of operator norm and definition of boundedness
(complement to the exercise session)

Consider V; and V5 two normed vector spaces over' F and T : V; — V5 a linear mapping.
Define [T'[, y, as

|Tv|
|7 := sup : (5)
veEVY, v#£0 |v]

"Here and in the following F can be chosen to be either R or C.



For a generic linear mapping T' we have |T'|| € [0, +00]. Prove that

|7 =" sup  |To|

veVi, [u]y, =1

— s Ty

veVa, Jloly, <1

Prove moreover that the following are equivalent

a 1 is continuous.

b T is continuous in 0, meaning that for any sequence {v,}, .y < Vi,

v, >0 = Tx, — 0.

¢ The quantity |T'|| is finite, meaning that |T'| < +co.

1.3 Exercise 3 - Young Inequality

Consider p, ¢, r € [1,400] such that

Let fe L4 (Rd), geL” (Rd); prove that

I+ gl, < 171,19l -

Hint: Consider the functions o, B, v defined as

a(x,y) =[f g (x-y)",
B(y):=If ¥,
Y (xy)=lgx—-y),

notice that

pP—q p

£r900l < [ abey)? 565 00 dy

and that
=1

p pq pr

1 — —r
+p q+p

to apply Hélder inequality.

(10)

(14)

(15)



1.4 Exercise 4 - Fourier transform and sinc

a Prove that there exists a positive real number C such that we have

b .
sup f Y| < . (16)
O<a<b<+wo|Ja T
Hint: Consider the function
o, esinx
F(t):= f e dx. (17)
0 X

Deduce a bound on F'(t) uniform in n. Apply the fundamental theorem of calculus
for F(0) to conclude.

b Consider an odd function f € L' (R). Prove that for any such function we have

b F (k) c
L Tdk

(2m)

sup
0<a<b<+o0

<

71/l (18)

¢ Let g (k) be a continuous odd function on the line such that is equal to 1/logk for
any k > 2. Prove that there cannot be an L' (R) function whose Fourier transform

is g.



2 Exercise Sheet 2

2.1 Exercise 1 - Fourier transform and convolution

Let f, g . (]Rd). Recall that in class we proved

— d ~
2

f#g=(2m)2 fg. (19)

Prove that

~

Feg=(m? fg. (20)

Hint: Consider the equivalent statement of (19) for the inverse of the Fourier transform
and apply it to fg.

2.2 Exercise 2 - Unique projector (complement to the class)

Let H be an Hilbert space and V' a closed linear subspace of H.

a In class we proved that for any f € H there exists an element g; € V' such that

I = g7 = min £ — . (21)

Prove that g; is the unique element of V' that satisfies the minimum.

b In class we proved that g is such that f — gy € V+. Prove that there is no other
element h € V such that f —he VL.

2.3 Exercise 3 - Hilbert space basis with Hahn-Banach

Let H be an Hilbert space. Prove that there exists a basis for H. Prove moreover that H
is separable if and only if there exists a countable base for it.

Hint: For the first part apply Zorn’s Lemma to the set of (also infinite) orthonormal
systems ordered by inclusion. Prove that any mazimal orthonormal system is a base, i.e.
is dense.

For the second part prove and use the following fact: if f is an element of H and S is a

basis for H, there exists a sequence of elements {e,}, .y S S such that f € spanyg {en}, cn-



2.4 Exercise 4 - Property of the adjoint (bounded operators)

Let A, B bounded operators on an Hilbert space H and «, 8 € C. Prove the following
equalities:

id* = id (22)

(A1) =4 (23)
(AB)* = B* A* (24)

(aA + BB)* = aA* + BB*. (25)

Moreover, prove that A* is bounded and that |A*|| = ||A]|.



3 Exercise Sheet 3

3.1 Exercise 1 - Properties of orthogonal projectors

Let H be a Hilbert space. Let V any closed subspace of #; recall the definition of V' as

VEii={feH|{g[)=0YgeV}. (26)
We saw in class that the Hilbert space 7 can be decomposed as H = V @ V*, meaning
that V n V4 = {0} and that for any non-zero f € H there exists a unique element f;- € V

such that f — fy € V. Define Py f := fy; from the uniqueness of fy this is a well defined
linear mapping.

a Prove that P‘% =Py =Py
b Use a to prove that Py is bounded and if V' # {0} then ||Py| = 1.

¢ Prove that if V; and V5 are two closed subspaces of H then?

V1 il V2 — PV1PV2 = 0. (27)

3.2 Exercise 2 - Derivative of inner product (complement to the class)

Let ¢ (t) and 1 (t) differentiable functions on the Hilbert space H, meaning that the limit

%f(t) ::h%¢(t+h});¢(t> (28)
exists in the norm topology of H for each ¢ € R, and similarly for 1 ().
Prove that p do )
70,0 (1) =< (), () + <o (), - () (29)

3.3 Exercise 3 - - [A, B] is self-adjoint

Let H be a Hilbert space. Consider A and B bounded self-adjoint operators on H. Prove
that % [A, B] is self adjoint.

3.4 Exercise 4 - Properties of the commutator

Consider a vector space V over C, A, B, C linear bounded operators on V and a € C.

a Prove that [A, B + aC| = [A,B] + «[A,C].

2We denote with L the condition of two subspaces of an Hilbert space H of being orthogonal, i.e., V3
is orthogonal to Va2, or Vi L V5 if and only if for any (f,g) € Vi x V2 we have {f,g) = 0.



b Prove that [B, A] = —[A, B].
¢ Prove that [A, BC| = [A,B]C + B[A,C].
d Prove that [A,[B,C]] = [[4, B],C] + [B,[A,C]].



4 Exercise Sheet 4

4.1 Exercise 1 - Two bounded operator cannot commute in a nontrivial manner

Let H be an Hilbert space. Let A and B linear operators on H such that there exists
a € C\ {0} such that
[A, B] = aid. (30)

Prove that A and B cannot be both bounded.

Hint: Assume both bounded; consider |[A, B™]| and find an absurd.

4.2 Exercise 2 - Fourier transform of the complex gaussian
a Prove that for any a € C such that Re («) > 0,

z2 2 z2+y2
<J e_%vdx> =J e 22 dxdy (31)
R R2

= 2ra, (32)

where the integral over R? can be evaluated using polar coordinates. Deduce that
12
f e 2adr =V2ma, (33)
R

where the square root is the one with positive real part.

b For all B> A > 0 and a € C\ {0} we have

B B 2
—f %e_%dx. (34)

Using this, prove that the integral in (33) is convergent for all nonzero o with
Re (a)) = 0, provided the integral is interpreted as a principle value when not abso-
lutely convergent, where the principal value is defined as

R—0

R
PV fR f(z)dx := lim JRf (x) dx. (35)

¢ Prove that the result of a is also valid for nonzero values of a with Re (a) = 0, at
least in the principal value.

Hint: Given n # 0, show that the principal value from A to 400 of exp [—2(7””7;77)]

is small for large A, uniformly in € [0, 1].

1 . . ht 1.2 m cm 2
— PV tkx ,—ig -k dk = i5ps T 36
o fRe € \ 2mine ¢ " (36)

where the square root is the one with real positive part.

d Prove that

10



4.3 Exercise 3 - Counterexample for the closed graph theorem

Consider a separable Hilbert space H and a complete orthonormal system for it {¢y,}
Assume that ¢, cannot be written as a finite linear combination of elements of {¢,,},, -
Let D denote the dense linear subspace of H consisting of all finite linear combinations
of elements of {¢,}, . and of ¢,. On D define the operator T': D — H defined as

neN*

T <aoocpoo + Z ang0n> = QopPop- (37)

neN

Prove that T is not bounded.

Hint: Use the closed graph theorem.

4.4 Exercise 4 - Free Schrodinger equation preserves the domain

Recall the definition of H? (R) as
H? (R) := {1/) e L2 (R) | k%) e L2 (R)}

Recall that in class we defined the map that to any initial datum 1y € L?(R) would
associate ¢, := Uy (t) 1o, defined via the Hamiltonian Hy := —% with domain D (Hy) =
H? (R). Indeed if Uy (t) 1 is defined for any 1y € S (R) as the unique solution to

{ ihdy (Up (t) vo) = HoUp (t) ¥o

Uo (£) tol,_p = o, (38)

then Uy (¢) is defined by density on the whole space L2 (R), and coincides with Uy (t) on
S (R).

Prove that if 49 € D (Hy) then ¢, € D (Hy).

11



5 Exercise Sheet 5

5.1 Exercise 1 - Well-posedness of standard deviation

Let ¢ be a unit vector in L? (R) such that z1), x2¢ € L? (R). Prove that

X%y = (X)y)*, (39)
where as we defined in class, X is the operator given by the multliplication by x and
(Ay = (Y, A). (40)

Hint: Use Jensen inequality.

5.2 Exercise 2 - Operator norm of multiplication by a sequence

Let a := {an},c; be a sequence of complex numbers. Consider the Hilbert space of
the square integrable functions b := [? (Z). Consider the operator that to the sequence
x := {Tp}, .y associate the sequence Mox = {0nTn},,cz-

Suppose that ||a|,, := sup,cz |an| < +00. Prove that M, is a well defined linear bounded
operator from b to itself and prove that |M,| = |o],.

5.3 [Exercise 3 - No solutions for too low energy in the potential well (comple-
ment to the class)

Consider the Hilbert space b := L? (R). And the operator H define

D(H):= H?(R) = {¢ e L2 (R) | k2 e L2 (R)}
W2 o
H=—f oy +V(X),

where the operator (V (X)) (z) =V (x) ¢ (x), with

| =C i |z < A,
V()= { 0 if o > 4, (41)

and with A and C positive constants. Consider E € (—oo0, —C'] and prove that there is no
nonzero ¥ € D (H) such that

Hyp = Eyp. (42)

5.4 [Exercise 4 - Odd solutions to the potential well (complement to the class)

Let b, H and D (H) as in Exercise 3. In class we saw that for any E € (—C,0) there is
always at least one nonzero even solution ¢ to the problem Hyg = Evg.
Prove that if Av2mCh < 7 there are no nonzero odd solutions, and for larger values of

C there is always at least one.

12



6 Exercise Sheet 6

6.1 Exercise 1 - A preserves a space, A* preserves the orthogonal

Let V be a closed subspace of H Hilbert space. Let A be a linear bounded operator on H
such that A (V) € V. Prove that A* (V1) c V.

6.2 Exercise 2 - Inverse of the adjoint of an invertible

Let H be an Hilbert space. Let A be a linear bounded operator on H with linear bounded
inverse A~!. Prove that (Afl)* A* = A* (Afl)* = id. Deduce that A* is invertible and
that (4*)~" = (A~1)".

6.3 Exercise 3 - Creation, annihilation and number
Consider the Hilbert space H := ¢? (N).

a Define the operator A as
(Aar),, = o4t Vn e N, (43)

for any o = {an}, oy € H.

Prove that A is a well defined linear bounded operator, find its norm and its spec-
trum.

b Consider A* the adjoint of A. Show its explicit action and find its norm and its
spectrum.

¢ Define B := A*A. Prove that B is a self-adjoint operator, show its explicit action
and find its norm and its spectrum.

Hint: Recall that if T is a linear bounded operator, the spectrum o (T') is a closed set,

p(T)=C\ o (T) the resolvent of T is defined as
p(T):= {)\ e C| (T —Xid)™! is a well-defined, linear, bounded opemtor} , (44)

and that o (T') < Byp| (0), where Br (0) := {a € H| |af, < R}.

6.4 Exercise 4 - Operator norm of multiplication for a function

Consider the interval I = (a,b) € R and the Hilbert space H := L? (I). Consider ¢ € C (I)
a real valued continuous function with |¢l|, < +o0. Consider the operator T, defined for
any ¥ € H as

To (x) := @ (x) ¥ (). (45)

Prove that T, is a well defined linear bounded operator and prove that o (T,) = ¢ ().

13



Hint: Show first that ¢ (I) < o (Ty,) and use the fact that the spectrum is closed to show
—\ C
that the same is true for the closures. Next, show that (a (T¢)> < p(Ty,) to conclude.

14



7 Exercise Sheet 7

7.1 Exercise 1 - Application of the UBP to the dual space

Let V' be a Banach space and E a nonempty subset of V' such that for any £ € V* there
exists a finite constant C¢ such that

sug 1€ (z)] < Ck. (46)

Prove that E' must be bounded.
Hint: Consider the map J : V — V** defined as

[J ()] (§) :==&(x) VeV, feV™ (47)
Prove that ||J (z)|+« = |z|| for any x € V. Use the Uniform Boundedness Principle to

show that J (E) is bounded and conclude.

7.2 Exercise 2 - Projection valued measures

Consider (X, 2) a measurable space (i.e., a set X with a o-algebra € in it), and consider
a projection-valued measure with values in H an Hilbert space. Let E, F € (.

a Prove that if E n F' = ¢ then Ran p (E) L Ran p (F').

b Prove that p (E) pu (F) is an orthogonal projector and that

Ran (u (E) u (F)) = Ranp (E) nRanp (F). (48)

7.3 Exercise 3- [A,B]=0=[f(A4),B]=0
Let H be an Hilbert space. Let A be a self-adjoint bounded operator over H. Let B

a bounded operator over H such that [A, B] = 0. Consider a bounded complex-valued
measurable function f. Prove that [f (A),B] = 0.

7.4 Exercise 4 - Norm and spectral radius

Let H be an Hilbert space. Let T be a bounded operator over . We proved in class that
in general R (T) < ||T, where

R(T):= sup |A|. (49)
Aeo(T)

Exhibit an explicit operator such that R (T") < |T||.

15



8 Exercise Sheet 8

8.1 Exercise 1 - Commuting operators and invertibility

a Let H be an Hilbert space. Suppose A, B € B(H) with [A,B] = 0 and A not
invertible. Prove that AB is not invertible.

Hint: Prove first that if AB were invertible then A would have both a left and a right
inverse. Then prove that those would need to be equal and conclude.

b Prove that if we do not assume A and B to commute, the result in a is false.

8.2 Exercise 2 - An operator with a closed extension is closable

Let H be an Hilbert space. Let A be an unbounded linear operator on H. Suppose there
exists a closed operator C' that extends the operator A. Prove that A is closable.

8.3 Exercise 3 - Explicit norm of resolvent operator

Let H be an Hilbert space. Let A be self-adjoint.

a Suppose g € p(A), where p (A) is the resolvent set of A. Prove that

1

H(A “ o id)_IH = IO e A

(50)

where d (z,Y) := infyey |z —y|, withz e C, Y < C.

Hint: Think of (A — Xo id)f1 as a function of A in the sense of the functional calculus
of A.

b Let \g € C and suppose that there exists € > 0 and some nonzero 1 € H such that

| Ay = Aot < el (51)

Prove that there exists A € o (A) such that |\ — A\g| < e.

8.4 Exercise 4 - The delta is not a closable operator

Let H = L? (I), with I = [0, 1]. Consider the operator A with domain D (A4) = C (I) and
with action

Ap(x) =4 (0), Ve D(A). (52)

Prove that A is not closable.

16



9 Exercise Sheet 9

9.1 Exercise 1 - Hardy inequality

Let ke Z,de N, k+d # 0. Let D be defined as

[ ¢ (RY if k>0,
D= { C2 (RA\{0}) ifk<—1, k+d=0. (53)
Prove that for any ¢ € D
4
| ool < |90 (0 ax (54)
Rd |k + d|* Jra
Hint: Use the fact that
k 1 &0 k
x|" = ME (37,] (’X| xj) (55)

to integrate by part on the left hand side of (54) and then use the Cauchy-Schwartz
inequality.

Remark: Notice that in particular if £k = —2 (and d # 2) this implies that as operators

1 4
W\—|d_2|A. (56)
A generalisation of this formula is called in the literature the Hardy inequality.
9.2 Exercise 2 - The Coulomb hamiltonian is self-adjoint
a Let H := L* (R?). Define (as in class) the operator Ho with?
D (Ho) = H? (R) = {w e H| k¥ (k) € L (R?) }, (57)
Hop = =& = (k9 () Ve D (Ho).  (58)

Prove that Hj is closed.

b Let D(H) := D (Hy). Define H := Hy+ ﬁ Prove that H is well-defined and closed.
(Assume, if necessary, to know that there exists a positive constant C' such that for

any ¢ € H? (R?) it holds ¢, < C'|[¢]p2)-

Hint: Use the fact that H? (RS) c L™ (R3) to prove that is well-defined. To prove
the closure, use (54) from Exercise 1 to show and subsequently use that Ve > 0,
Vi e D(H)

1 2
| o] < 2ol + vl (59)

L2

Recall that we proved in the exercise session that if [¢] ;2 := H (1+ |k|2) ’lZH ,» then H? (R?) is closed
L

with respect to ||| 2.

17



to get that

2 1
< —F—— —_— .
Holze < Sy gy I¥lin + g 1H¥ls (60)

¢ Prove that H is symmetric.

d Prove that H is self-adjoint.

Hint: Use the fact that \%l is a self-adjoint operator and apply the Kato-Rellich
theorem.

9.3 Exercise 3 - The square root is monotonous

Let H an Hilbert space and let A, Be B(H), A* = A, B* =B

a Suppose* A > id; prove that A is invertible with A=! € B () and that 0 < A~! < id.

b Suppose 0 < A < B; prove that for any A > 0, A+ \id and B+ \id are invertible with
(A+Xid)™!, (B+ Aid)™! € B(H) and that we have (B 4+ Aid) ™' < (4 4+ Aid) ™.

¢ Suppose 0 < A < B; prove that v/A < v/B.
Hint: Prove and use the fact that

N 1J+OO L (1 A )d)\ vz > 0 (61)
T == — (1= : z=0.
™ Jo \/X $+A

9.4 Exercise 4 - Exercise on norm of the resolvent

Let H be an Hilbert space. Let A be a linear self-adjoint operator on H with A > 0 and
A > 0. Denote with [-| the operator norm and with [-|,, the norm induced by the inner
product in the Hilbert space H.

a Prove that H(A + )\id)_1H < 1/A

b Prove that for all ¢ € H,

0l > |44+ xia) ¢Hi + 22 (A ria) wHi | (62)

Conclude that HA (A+ )\id)’lu <1

“Recall that A > 0 if for any ¢ € D (A), (¢, AY) > 0 and that A > B if A— B > 0.

18



10 Exercise Sheet 10

10.1 Exercise 1 - The generator of the translation is the momentum

Let H := L? (R) and P := —id, the momentum operator defined on the domain D (P) :=
H! (R) as Py (z) = —z’% (). Consider for any A € R the bounded operator T’ defined
for any v € H as T\ (x) = ¢ (z — ).

Prove that {T)},cp is a strongly continuous one-parameter unitary group and that

Ty = e = o, (63)

10.2 Exercise 2 - Condition for self-adjointness (complement to the class)

Let H be an Hilbert space, A a symmetric operator and p > 0 a positive real number.
Prove that the following are equivalent.

a A is self-adjoint.
b Ran (A + ipid) = Ran (A —ipid) = H.

10.3 Exercise 3 - Unitary operators as exponentials

Let H be an Hilbert space. Let U € B(H). Prove that U is unitary if and only if there
exist a self-adjoint operator A on H such that U = e*4

10.4 Exercise 4 - Bogoliubov diagonalization - part I

Let ‘H be an Hilbert space and Ay, A_ € B(H) such that
[As, A*] id, (64)
A+a [AJM ] = (65)
Let moreover 7, ( € R, with 7 > ¢ > 0. Define

Hi=n(ATA, + A*A ) +C(ATA* + A A ). (66)

a Prove that H is self-adjoint.

b Prove that there exist operators C'y and numbers «, 5 € R such that

[Cy,CE] =1id, (67)
[Ci.Co]l=[Cy,C*] =0, (68)
H=a(CiCi+C*C) +p. (69)

19



Hint: Define
Cy =y As + 8§ AT (70)

for some vy, &+ € R. Use (67) and (68) to deduce that v+ = vy—, {4 = &— and that
v — &2 = 1. Calculate C*Cy and deduce (69).

20



11 Exercise Sheet 11

11.1 Exercise 1 - Double Harmonic oscillator
Let H = L? (RQ). Let H be defined as

H:=—§(Am+Ay)+5(x +y%) — Azy (71)
with D () = C2 (R?).

Prove that if A € (—1,1) then H is essentially self adjoint and study the spectrum of the
closure of H.

Hint: Prove that, with the right change of variables (z,vy) — (w,z), H = Hy, + H, with
H,, only depending on w and H, only depending on z.

11.2 Exercise 2 - Normal matrices polynomials

Let A be a normal matrix (meaning that AA* = A*A) and p a polynomial in two variables.
Show by example that an eigenvector for p (4, A*) is not necessarily an eigenvector for A.

Remark: Even if eigenvectors of p (A, A*) do not correspond to eigenvectors of A, the
spectrum does, in the sense that

o (p(4,4%) ={p(\A) [ Aea(A)}. (72)

11.3 Exercise 3 - Spectral measure of the laplacian

Let I := [0,1] and consider H = L?(I). Define the operator H := —A with domain®
D (H) := H*(I) n C}. (I). Prove that H is self-adjoint and exhibit its spectral measure
explicitly.

11.4 Exercise 4 - Bogoliubov diagonalization - part II

Let H be an Hilbert space and Ay, A_ € B(H) such that
[As, A*] id, (73)
A+a [AJra A* ] (74)
Let moreover 7, ¢ € R, with 7 > ¢ > 0. Define

Hi=n(ATA, + A*A ) +C(ATA* + A A ). (75)

®This definition makes sense, because we know that for any function ¢ € H? (I) we have that there is
a function 1) € C* (I) that coincides almost everywhere with 1. The definition of the domain is then the
set of functions ¢ € H? (I) such that the function 1 is periodic with derivative which is periodic.
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Recall that if § = 1 arctanh (%), a=~/n2—C2 B=+n—C*—nand C; and C_ are
defined as

C4 := cosh (§) A+ + sinh (9) AL (76)
we get
[C'J_r, Ci] =id, (77)
[C-‘ra C—] = [C-ﬁ-?Ci] = 07 (78)
H=0o(CiCi+C*C_) + 8. (79)

a Consider X := A} A* — AL A_. Prove that X is skew-adjoint, meaning that X* =
-X.

b For any t € R consider U (t) := e ', Prove that {U (¢)},.g is a strongly continuous
one-parameter unitary group such that

U (t) A1U (—t) = cosh (t) Ay + sinh () AT. (80)
Hint: Consider for any v, p € H the function f : R — R defined as
f () =, U (1) A+ U (=) ). (81)

Prove that f satisfies a closed second order differential equation and deduce (80).

¢ Suppose that there is a complete orthonormal system {¢,}, .y for H such that
A% Arp, = €tgn, with € € R. Prove that there exist a complete orthonormal
system {1, }, . for H such that

Hiyp = a (&) +6,) + B] tn. (82)
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