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1 Exercise Sheet 1

1.1 Exercise 1 - Examples of Fourier transforms

a Consider the function f P L1 pTq defined as the periodization of

f pxq :“ x p2π ´ xq . (1)

Calculate the Fourier coefficients of f and use them to prove that

`8
ÿ

k“0

1

k2
“
π2

6
. (2)

b Let σ be a positive real number and v, u P Rd. Consider the function gσ,v,u in the
space L2

`

Rd
˘

with d P N defined as

gσ,v,u pxq :“
´σ

π

¯
d
4
e´

σ
2
|x´v|2`iu¨x. (3)

Then prove that pgσ,v,u “ eiv¨ugσ´1,u,´v, i.e.

F
„

´σ

π

¯
d
4
e´

σ
2
|x´v|2`iu¨x



pkq “

ˆ

1

σπ

˙
d
4

e´
1
2σ
|k´u|2´iu¨pk´vq. (4)

1.2 Exercise 2 - Properties of operator norm and definition of boundedness
(complement to the exercise session)

Consider V1 and V2 two normed vector spaces over1 F and T : V1 Ñ V2 a linear mapping.
Define }T }V1,V2 as

}T } :“ sup
vPV1, v‰0

}Tv}

}v}
. (5)

1Here and in the following F can be chosen to be either R or C.
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For a generic linear mapping T we have }T } P r0,`8s. Prove that

}T } “ sup
vPV1, }v}V1

“1
}Tv} (6)

“ sup
vPV1, }v}V1

ď1
}Tv} . (7)

Prove moreover that the following are equivalent

a T is continuous.

b T is continuous in 0, meaning that for any sequence tvnunPN Ď V1,

vn Ñ 0 ùñ Txn Ñ 0. (8)

c The quantity }T } is finite, meaning that }T } ă `8.

1.3 Exercise 3 - Young Inequality

Consider p, q, r P r1,`8s such that

1

q
`

1

r
“ 1`

1

p
. (9)

Let f P Lq
`

Rd
˘

, g P Lr
`

Rd
˘

; prove that

}f ˚ g}p ď }f}q }g}r . (10)

Hint: Consider the functions α, β, γ defined as

α px,yq :“ |f pyq|q |g px´ yq|r , (11)

β pyq :“ |f pyq|q , (12)

γ px,yq :“ |g px´ yq|r , (13)

notice that

|f ˚ g pxq| ď

ż

Rd
α px,yq

1
p β pyq

p´q
pq γ px,yq

p´r
pr dy (14)

and that
1

p
`
p´ q

pq
`
p´ r

pr
“ 1 (15)

to apply Hölder inequality.
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1.4 Exercise 4 - Fourier transform and sinc

a Prove that there exists a positive real number C such that we have

sup
0ďaăbă`8

ˇ

ˇ

ˇ

ˇ

ż b

a

sinx

x
dx

ˇ

ˇ

ˇ

ˇ

ď C. (16)

Hint: Consider the function

F ptq :“

ż η

0
e´tx

sinx

x
dx. (17)

Deduce a bound on F 1ptq uniform in η. Apply the fundamental theorem of calculus
for F p0q to conclude.

b Consider an odd function f P L1 pRq. Prove that for any such function we have

sup
0ďaăbă`8

ˇ

ˇ

ˇ

ˇ

ˇ

ż b

a

pf pkq

k
dk

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C

p2πq
d
2

}f}1 . (18)

c Let g pkq be a continuous odd function on the line such that is equal to 1{ log k for
any k ě 2. Prove that there cannot be an L1 pRq function whose Fourier transform
is g.
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2 Exercise Sheet 2

2.1 Exercise 1 - Fourier transform and convolution

Let f, g P S
`

Rd
˘

. Recall that in class we proved

zf ˚ g “ p2πq
d
2 pfpg. (19)

Prove that
pf ˚ pg “ p2πq

d
2 xfg. (20)

Hint: Consider the equivalent statement of (19) for the inverse of the Fourier transform

and apply it to xfg.

2.2 Exercise 2 - Unique projector (complement to the class)

Let H be an Hilbert space and V a closed linear subspace of H.

a In class we proved that for any f P H there exists an element gf P V such that

}f ´ gf } “ min
hPV

}f ´ h} . (21)

Prove that gf is the unique element of V that satisfies the minimum.

b In class we proved that gf is such that f ´ gf P V
K. Prove that there is no other

element h P V such that f ´ h P V K.

2.3 Exercise 3 - Hilbert space basis with Hahn-Banach

Let H be an Hilbert space. Prove that there exists a basis for H. Prove moreover that H
is separable if and only if there exists a countable base for it.

Hint: For the first part apply Zorn’s Lemma to the set of (also infinite) orthonormal
systems ordered by inclusion. Prove that any maximal orthonormal system is a base, i.e.
is dense.

For the second part prove and use the following fact: if f is an element of H and S is a
basis for H, there exists a sequence of elements tenunPN Ď S such that f P spanK tenunPN.
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2.4 Exercise 4 - Property of the adjoint (bounded operators)

Let A, B bounded operators on an Hilbert space H and α, β P C. Prove the following
equalities:

id˚ “ id (22)

pA˚q˚ “ A (23)

pABq˚ “ B˚A˚ (24)

pαA` βBq˚ “ αA˚ ` βB˚. (25)

Moreover, prove that A˚ is bounded and that }A˚} “ }A}.
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3 Exercise Sheet 3

3.1 Exercise 1 - Properties of orthogonal projectors

Let H be a Hilbert space. Let V any closed subspace of H; recall the definition of V K as

V K :“ tf P H | xg, fy “ 0 @g P V u . (26)

We saw in class that the Hilbert space H can be decomposed as H “ V ‘ V K, meaning
that V XV K “ t0u and that for any non-zero f P H there exists a unique element fV P V
such that f ´fV P V

K. Define PV f :“ fV ; from the uniqueness of fV this is a well defined
linear mapping.

a Prove that P 2
V “ PV “ P ˚V .

b Use a to prove that PV is bounded and if V ‰ t0u then }PV } “ 1.

c Prove that if V1 and V2 are two closed subspaces of H then2

V1 K V2 ðñ PV1PV2 “ 0. (27)

3.2 Exercise 2 - Derivative of inner product (complement to the class)

Let φ ptq and ψ ptq differentiable functions on the Hilbert space H, meaning that the limit

dφ

dt
ptq :“ lim

hÑ0

φ pt` hq ´ φ ptq

h
(28)

exists in the norm topology of H for each t P R, and similarly for ψ ptq.

Prove that
d

dt
xφ ptq , ψ ptqy “ x

dφ

dt
ptq , ψ ptqy ` xφ ptq ,

dψ

dt
ptqy (29)

3.3 Exercise 3 - 1
i~ rA,Bs is self-adjoint

Let H be a Hilbert space. Consider A and B bounded self-adjoint operators on H. Prove
that 1

i~ rA,Bs is self adjoint.

3.4 Exercise 4 - Properties of the commutator

Consider a vector space V over C, A, B, C linear bounded operators on V and α P C.

a Prove that rA,B ` αCs “ rA,Bs ` α rA,Cs.

2We denote with K the condition of two subspaces of an Hilbert space H of being orthogonal, i.e., V1

is orthogonal to V2, or V1 K V2 if and only if for any pf, gq P V1 ˆ V2 we have xf, gy “ 0.
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b Prove that rB,As “ ´ rA,Bs.

c Prove that rA,BCs “ rA,BsC `B rA,Cs.

d Prove that rA, rB,Css “ rrA,Bs , Cs ` rB, rA,Css.
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4 Exercise Sheet 4

4.1 Exercise 1 - Two bounded operator cannot commute in a nontrivial manner

Let H be an Hilbert space. Let A and B linear operators on H such that there exists
α P Cz t0u such that

rA,Bs “ α id . (30)

Prove that A and B cannot be both bounded.

Hint: Assume both bounded; consider }rA,Bns} and find an absurd.

4.2 Exercise 2 - Fourier transform of the complex gaussian

a Prove that for any α P C such that Re pαq ą 0,

ˆ
ż

R
e´

x2

2αdx

˙2

“

ż

R2

e´
x2`y2

2α dxdy (31)

“ 2πα, (32)

where the integral over R2 can be evaluated using polar coordinates. Deduce that

ż

R
e´

x2

2αdx “
?

2πα, (33)

where the square root is the one with positive real part.

b For all B ě A ą 0 and α P Cz t0u we have

ż B

A
e´

x2

2αdx “ ´
α

x
e´

x2

2α

ˇ

ˇ

ˇ

ˇ

B

A

´

ż B

A

α

x2
e´

x2

2αdx. (34)

Using this, prove that the integral in (33) is convergent for all nonzero α with
Re pαq ě 0, provided the integral is interpreted as a principle value when not abso-
lutely convergent, where the principal value is defined as

PV

ż

R
f pxq dx :“ lim

RÑ8

ż R

´R
f pxq dx. (35)

c Prove that the result of a is also valid for nonzero values of α with Re pαq “ 0, at
least in the principal value.

Hint: Given η ‰ 0, show that the principal value from A to `8 of exp
”

´ x2

2pγ`iηq

ı

is small for large A, uniformly in γ P r0, 1s.

d Prove that
1

2π
PV

ż

R
eikxe´i

~t
2m

k2dk “

c

m

2πi~t
ei

m
2~tx

2
, (36)

where the square root is the one with real positive part.
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4.3 Exercise 3 - Counterexample for the closed graph theorem

Consider a separable Hilbert space H and a complete orthonormal system for it tϕnunPN.
Assume that ϕ8 cannot be written as a finite linear combination of elements of tϕnunPN.
Let D denote the dense linear subspace of H consisting of all finite linear combinations
of elements of tϕnunPN and of ϕ8. On D define the operator T : D Ñ H defined as

T

˜

α8ϕ8 `
ÿ

nPN
αnϕn

¸

:“ α8ϕ8. (37)

Prove that T is not bounded.

Hint: Use the closed graph theorem.

4.4 Exercise 4 - Free Schrödinger equation preserves the domain

Recall the definition of H2 pRq as

H2 pRq :“
!

ψ P L2 pRq | k2 pψ P L2 pRq
)

Recall that in class we defined the map that to any initial datum ψ0 P L
2 pRq would

associate ψt :“ rU0 ptqψ0, defined via the Hamiltonian H0 :“ ´ B2

Bx2
with domain D pH0q “

H2 pRq. Indeed if U0 ptqψ0 is defined for any ψ0 P S pRq as the unique solution to

"

i~Bt pU0 ptqψ0q “ H0U0 ptqψ0

U0 ptqψ0|t“0 “ ψ0,
(38)

then rU0 ptq is defined by density on the whole space L2 pRq, and coincides with U0 ptq on
S pRq.

Prove that if ψ0 P D pH0q then ψt P D pH0q.
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5 Exercise Sheet 5

5.1 Exercise 1 - Well-posedness of standard deviation

Let ψ be a unit vector in L2 pRq such that xψ, x2ψ P L2 pRq. Prove that

xX2yψ ě pxXyψq
2 , (39)

where as we defined in class, X is the operator given by the multliplication by x and

xAyψ :“ xψ,Aψy. (40)

Hint: Use Jensen inequality.

5.2 Exercise 2 - Operator norm of multiplication by a sequence

Let α :“ tαnunPZ be a sequence of complex numbers. Consider the Hilbert space of
the square integrable functions h :“ l2 pZq. Consider the operator that to the sequence
x :“ txnunPZ associate the sequence Mαx “ tαnxnunPZ.

Suppose that }α}8 :“ supnPZ |αn| ă `8. Prove that Ma is a well defined linear bounded
operator from h to itself and prove that }Mα} “ }α}8.

5.3 Exercise 3 - No solutions for too low energy in the potential well (comple-
ment to the class)

Consider the Hilbert space h :“ L2 pRq. And the operator H define

D pHq :“ H2 pRq “
!

ψ P L2 pRq | k2 pψ P L2 pRq
)

H “ ´
~2

2m

B2

Bx2
` V pXq ,

where the operator pV pXqψq pxq “ V pxqψ pxq, with

V pxq :“

"

´C if |x| ď A,
0 if |x| ą A,

(41)

and with A and C positive constants. Consider E P p´8,´Cs and prove that there is no
nonzero ψE P D pHq such that

HψE “ EψE . (42)

5.4 Exercise 4 - Odd solutions to the potential well (complement to the class)

Let h, H and D pHq as in Exercise 3. In class we saw that for any E P p´C, 0q there is
always at least one nonzero even solution ψE to the problem HψE “ EψE .

Prove that if A
?

2mC~ ď π
2 there are no nonzero odd solutions, and for larger values of

C there is always at least one.
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6 Exercise Sheet 6

6.1 Exercise 1 - A preserves a space, A˚ preserves the orthogonal

Let V be a closed subspace of H Hilbert space. Let A be a linear bounded operator on H
such that A pV q Ď V . Prove that A˚

`

V K
˘

Ď V K.

6.2 Exercise 2 - Inverse of the adjoint of an invertible

Let H be an Hilbert space. Let A be a linear bounded operator on H with linear bounded
inverse A´1. Prove that

`

A´1
˘˚
A˚ “ A˚

`

A´1
˘˚
“ id. Deduce that A˚ is invertible and

that pA˚q´1 “
`

A´1
˘˚

.

6.3 Exercise 3 - Creation, annihilation and number

Consider the Hilbert space H :“ `2 pNq.

a Define the operator A as

pAαqn “ αn`1 @n P N, (43)

for any α “ tαnunPN P H.

Prove that A is a well defined linear bounded operator, find its norm and its spec-
trum.

b Consider A˚ the adjoint of A. Show its explicit action and find its norm and its
spectrum.

c Define B :“ A˚A. Prove that B is a self-adjoint operator, show its explicit action
and find its norm and its spectrum.

Hint: Recall that if T is a linear bounded operator, the spectrum σ pT q is a closed set,
ρ pT q ” Cz σ pT q the resolvent of T is defined as

ρ pT q :“
!

λ P C| pT ´ λ idq´1 is a well-defined, linear, bounded operator
)

, (44)

and that σ pT q Ď B}T } p0q, where BR p0q :“ tα P H| }α}2 ă Ru.

6.4 Exercise 4 - Operator norm of multiplication for a function

Consider the interval I “ pa, bq Ď R and the Hilbert space H :“ L2 pIq. Consider ϕ P C pIq
a real valued continuous function with }ϕ}8 ă `8. Consider the operator Tϕ defined for
any ψ P H as

Tϕψ pxq :“ ϕ pxqψ pxq . (45)

Prove that Tϕ is a well defined linear bounded operator and prove that σ pTϕq “ ϕ pIq.

13



Hint: Show first that ϕ pIq Ď σ pTϕq and use the fact that the spectrum is closed to show

that the same is true for the closures. Next, show that
´

σ pTϕq
¯c
Ď ρ pTϕq to conclude.
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7 Exercise Sheet 7

7.1 Exercise 1 - Application of the UBP to the dual space

Let V be a Banach space and E a nonempty subset of V such that for any ξ P V ˚ there
exists a finite constant Cξ such that

sup
xPE

|ξ pxq| ď Cξ. (46)

Prove that E must be bounded.

Hint: Consider the map J : V Ñ V ˚˚ defined as

rJ pxqs pξq :“ ξ pxq @x P V, ξ P V ˚. (47)

Prove that }J pxq}V ˚˚ “ }x} for any x P V . Use the Uniform Boundedness Principle to
show that J pEq is bounded and conclude.

7.2 Exercise 2 - Projection valued measures

Consider pX,Ωq a measurable space (i.e., a set X with a σ-algebra Ω in it), and consider
a projection-valued measure with values in H an Hilbert space. Let E, F P Ω.

a Prove that if E X F “ H then Ranµ pEq K Ranµ pF q.

b Prove that µ pEqµ pF q is an orthogonal projector and that

Ran pµ pEqµ pF qq “ Ranµ pEq X Ranµ pF q . (48)

7.3 Exercise 3 - rA,Bs “ 0ñ rf pAq , Bs “ 0

Let H be an Hilbert space. Let A be a self-adjoint bounded operator over H. Let B
a bounded operator over H such that rA,Bs “ 0. Consider a bounded complex-valued
measurable function f . Prove that rf pAq , Bs “ 0.

7.4 Exercise 4 - Norm and spectral radius

Let H be an Hilbert space. Let T be a bounded operator over H. We proved in class that
in general R pT q ď }T }, where

R pT q :“ sup
λPσpT q

|λ| . (49)

Exhibit an explicit operator such that R pT q ă }T }.
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8 Exercise Sheet 8

8.1 Exercise 1 - Commuting operators and invertibility

a Let H be an Hilbert space. Suppose A,B P B pHq with rA,Bs “ 0 and A not
invertible. Prove that AB is not invertible.

Hint: Prove first that if AB were invertible then A would have both a left and a right
inverse. Then prove that those would need to be equal and conclude.

b Prove that if we do not assume A and B to commute, the result in a is false.

8.2 Exercise 2 - An operator with a closed extension is closable

Let H be an Hilbert space. Let A be an unbounded linear operator on H. Suppose there
exists a closed operator C that extends the operator A. Prove that A is closable.

8.3 Exercise 3 - Explicit norm of resolvent operator

Let H be an Hilbert space. Let A be self-adjoint.

a Suppose λ0 P ρ pAq, where ρ pAq is the resolvent set of A. Prove that

›

›

›
pA´ λ0 idq´1

›

›

›
“

1

d pλ0, σ pAqq
, (50)

where d px, Y q :“ infyPY |x´ y|, with x P C, Y Ď C.

Hint: Think of pA´ λ0 idq´1 as a function of A in the sense of the functional calculus
of A.

b Let λ0 P C and suppose that there exists ε ą 0 and some nonzero ψ P H such that

}Aψ ´ λ0ψ} ă ε }ψ} . (51)

Prove that there exists λ P σ pAq such that |λ´ λ0| ă ε.

8.4 Exercise 4 - The delta is not a closable operator

Let H “ L2 pIq, with I “ r0, 1s. Consider the operator A with domain D pAq “ C pIq and
with action

Aψ pxq “ ψ p0q , @ψ P D pAq . (52)

Prove that A is not closable.
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9 Exercise Sheet 9

9.1 Exercise 1 - Hardy inequality

Let k P Z, d P N, k ` d ‰ 0. Let D be defined as

D :“

"

C8c
`

Rd
˘

if k ě 0,
C8c

`

Rdz t0u
˘

if k ď ´1, k ` d ‰ 0.
(53)

Prove that for any ψ P D
ż

Rd
|x|k |ψ pxq|2 dx ď

4

|k ` d|2

ż

Rd
|x|k`2 |∇ψ pxq|2 dx. (54)

Hint: Use the fact that

|x|k “
1

k ` d

d
ÿ

j“1

B

Bxj

´

|x|k xj

¯

(55)

to integrate by part on the left hand side of (54) and then use the Cauchy-Schwartz
inequality.

Remark: Notice that in particular if k “ ´2 (and d ‰ 2) this implies that as operators

1

|x|2
ď ´

4

|d´ 2|
∆. (56)

A generalisation of this formula is called in the literature the Hardy inequality.

9.2 Exercise 2 - The Coulomb hamiltonian is self-adjoint

a Let H :“ L2
`

R3
˘

. Define (as in class) the operator H0 with3

D pH0q :“ H2
`

R3
˘

”

!

ψ P H| |k|2 pψ pkq P L2
`

R3
˘

)

, (57)

H0ψ “ ´∆ψ “
´

|k|2 pψ pkq
¯_

, @ψ P D pH0q . (58)

Prove that H0 is closed.

b Let D pHq :“ D pH0q. Define H :“ H0`
1
|x| . Prove that H is well-defined and closed.

(Assume, if necessary, to know that there exists a positive constant C such that for
any ψ P H2

`

R3
˘

it holds }ψ}L8 ď C }ψ}H2).

Hint: Use the fact that H2
`

R3
˘

Ď L8
`

R3
˘

to prove that is well-defined. To prove
the closure, use (54) from Exercise 1 to show and subsequently use that @ε ą 0,
@ψ P D pHq

›

›

›

›

1

|x|
ψ

›

›

›

›

L2

ď
2

ε
}ψ}L2 ` ε }H0ψ}L2 (59)

3Recall that we proved in the exercise session that if }ψ}H2 :“
›

›

›

`

1` |k|2
˘

pψ
›

›

›

L2
, then H2

`

R3
˘

is closed

with respect to }¨}H2 .
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to get that

}H0ψ}L2 ď
2

ε p1´ εq
}ψ}L2 `

1

1´ ε
}Hψ}L2 . (60)

c Prove that H is symmetric.

d Prove that H is self-adjoint.

Hint: Use the fact that 1
|x| is a self-adjoint operator and apply the Kato-Rellich

theorem.

9.3 Exercise 3 - The square root is monotonous

Let H an Hilbert space and let A, B P B pHq, A˚ “ A, B˚ “ B

a Suppose4 A ě id; prove that A is invertible with A´1 P B pHq and that 0 ď A´1 ď id.

b Suppose 0 ď A ď B; prove that for any λ ą 0, A`λ id andB`λ id are invertible with
pA` λ idq´1 , pB ` λ idq´1 P B pHq and that we have pB ` λ idq´1 ď pA` λ idq´1.

c Suppose 0 ď A ď B; prove that
?
A ď

?
B.

Hint: Prove and use the fact that

?
x “

1

π

ż `8

0

1
?
λ

ˆ

1´
λ

x` λ

˙

dλ, @x ě 0. (61)

9.4 Exercise 4 - Exercise on norm of the resolvent

Let H be an Hilbert space. Let A be a linear self-adjoint operator on H with A ě 0 and
λ ą 0. Denote with }¨} the operator norm and with }¨}H the norm induced by the inner
product in the Hilbert space H.

a Prove that
›

›

›
pA` λ idq´1

›

›

›
ď 1{λ.

b Prove that for all ψ P H,

}ψ}2H ě
›

›

›
A pA` λ idq´1 ψ

›

›

›

2

H
` λ2

›

›

›
pA` λ idq´1 ψ

›

›

›

2

H
. (62)

Conclude that
›

›

›
A pA` λ idq´1

›

›

›
ď 1.

4Recall that A ě 0 if for any ψ P D pAq, xψ,Aψy ě 0 and that A ě B if A´B ě 0.
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10 Exercise Sheet 10

10.1 Exercise 1 - The generator of the translation is the momentum

Let H :“ L2 pRq and P :“ ´iBx the momentum operator defined on the domain D pP q :“
H1 pRq as Pψ pxq “ ´iBψ

Bx pxq. Consider for any λ P R the bounded operator Tλ defined
for any ψ P H as Tλψ pxq “ ψ px´ λq.

Prove that tTλuλPR is a strongly continuous one-parameter unitary group and that

Tλ “ eiλP “ eλBx . (63)

10.2 Exercise 2 - Condition for self-adjointness (complement to the class)

Let H be an Hilbert space, A a symmetric operator and µ ą 0 a positive real number.
Prove that the following are equivalent.

a A is self-adjoint.

b Ran pA` iµ idq “ Ran pA´ iµ idq “ H.

10.3 Exercise 3 - Unitary operators as exponentials

Let H be an Hilbert space. Let U P B pHq. Prove that U is unitary if and only if there
exist a self-adjoint operator A on H such that U “ eiA.

10.4 Exercise 4 - Bogoliubov diagonalization - part I

Let H be an Hilbert space and A`, A´ P B pHq such that

“

A˘, A
˚
˘

‰

“ id, (64)

rA`, A´s “
“

A`, A
˚
´

‰

“ 0. (65)

Let moreover η, ζ P R, with η ą ζ ě 0. Define

H :“ η
`

A˚`A` `A
˚
´A´

˘

` ζ
`

A˚`A
˚
´ `A`A´

˘

. (66)

a Prove that H is self-adjoint.

b Prove that there exist operators C˘ and numbers α, β P R such that

“

C˘, C
˚
˘

‰

“ id, (67)

rC`, C´s “
“

C`, C
˚
´

‰

“ 0, (68)

H “ α
`

C˚`C` ` C
˚
´C´

˘

` β. (69)
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Hint: Define
C˘ :“ γ˘A˘ ` ξ˘A

˚
¯ (70)

for some γ˘, ξ˘ P R. Use (67) and (68) to deduce that γ` “ γ´, ξ` “ ξ´ and that
γ2˘ ´ ξ

2
˘ “ 1. Calculate C˚˘C˘ and deduce (69).
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11 Exercise Sheet 11

11.1 Exercise 1 - Double Harmonic oscillator

Let H “ L2
`

R2
˘

. Let rH be defined as

rH :“ ´
1

2
p∆x `∆yq `

1

2

`

x2 ` y2
˘

´ λxy (71)

with D
´

rH
¯

“ C8c
`

R2
˘

.

Prove that if λ P p´1, 1q then rH is essentially self adjoint and study the spectrum of the
closure of rH.

Hint: Prove that, with the right change of variables px, yq Ñ pw, zq, rH “ Hw `Hz with
Hw only depending on w and Hz only depending on z.

11.2 Exercise 2 - Normal matrices polynomials

Let A be a normal matrix (meaning that AA˚ “ A˚A) and p a polynomial in two variables.
Show by example that an eigenvector for p pA,A˚q is not necessarily an eigenvector for A.

Remark: Even if eigenvectors of p pA,A˚q do not correspond to eigenvectors of A, the
spectrum does, in the sense that

σ pp pA,A˚qq “ tp pλ, λ˚q | λ P σ pAqu . (72)

11.3 Exercise 3 - Spectral measure of the laplacian

Let I :“ r0, 1s and consider H “ L2 pIq. Define the operator H :“ ´∆ with domain5

D pHq :“ H2 pIq X C1
per pIq. Prove that H is self-adjoint and exhibit its spectral measure

explicitly.

11.4 Exercise 4 - Bogoliubov diagonalization - part II

Let H be an Hilbert space and A`, A´ P B pHq such that

“

A˘, A
˚
˘

‰

“ id, (73)

rA`, A´s “
“

A`, A
˚
´

‰

“ 0. (74)

Let moreover η, ζ P R, with η ą ζ ě 0. Define

H :“ η
`

A˚`A` `A
˚
´A´

˘

` ζ
`

A˚`A
˚
´ `A`A´

˘

. (75)

5This definition makes sense, because we know that for any function ψ P H2
pIq we have that there is

a function rψ P C1
pIq that coincides almost everywhere with ψ. The definition of the domain is then the

set of functions ψ P H2
pIq such that the function rψ is periodic with derivative which is periodic.
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Recall that if θ “ 1
2 arctanh

´

ζ
η

¯

, α “
a

η2 ´ ζ2, β “
a

η2 ´ ζ2 ´ η and C` and C´ are

defined as
C˘ :“ cosh pθqA˘ ` sinh pθqA˚¯ (76)

we get

“

C˘, C
˚
˘

‰

“ id, (77)

rC`, C´s “
“

C`, C
˚
´

‰

“ 0, (78)

H “ α
`

C˚`C` ` C
˚
´C´

˘

` β. (79)

a Consider X :“ A˚`A
˚
´ ´ A`A´. Prove that X is skew-adjoint, meaning that X˚ “

´X.

b For any t P R consider U ptq :“ e´tX . Prove that tU ptqutPR is a strongly continuous
one-parameter unitary group such that

U ptqA˘U p´tq “ cosh ptqA˘ ` sinh ptqA˚¯. (80)

Hint: Consider for any ψ,ϕ P H the function f : RÑ R defined as

f˘ ptq :“ xψ,U ptqA˘U p´tqϕy. (81)

Prove that f satisfies a closed second order differential equation and deduce (80).

c Suppose that there is a complete orthonormal system tϕnunPN for H such that
A˚˘A˘ϕn “ ε˘nϕn, with ε˘n P R. Prove that there exist a complete orthonormal
system tψnunPN for H such that

Hψn “
“

α
`

ε`n ` ε
´
n

˘

` β
‰

ψn. (82)
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