

Introduction to Mathematical Quantum Theory

Text of all the Exercises

Teacher: Prof. Chiara Saffirio

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Contents

1	Exercise Sheet 1	3
1.1	Exercise 1 - Examples of Fourier transforms	3
1.2	Exercise 2 - Properties of operator norm and definition of boundedness (complement to the exercise session)	3
1.3	Exercise 3 - Young Inequality	4
1.4	Exercise 4 - Fourier transform and sinc	5
2	Exercise Sheet 2	6
2.1	Exercise 1 - Fourier transform and convolution	6
2.2	Exercise 2 - Unique projector (complement to the class)	6
2.3	Exercise 3 - Hilbert space basis with Hahn-Banach	6
2.4	Exercise 4 - Property of the adjoint (bounded operators)	7
3	Exercise Sheet 3	8
3.1	Exercise 1 - Properties of orthogonal projectors	8
3.2	Exercise 2 - Derivative of inner product (complement to the class)	8
3.3	Exercise 3 - $\frac{1}{i\hbar} [A, B]$ is self-adjoint	8
3.4	Exercise 4 - Properties of the commutator	8
4	Exercise Sheet 4	10
4.1	Exercise 1 - Two bounded operator cannot commute in a nontrivial manner	10
4.2	Exercise 2 - Fourier transform of the complex gaussian	10
4.3	Exercise 3 - Counterexample for the closed graph theorem	11
4.4	Exercise 4 - Free Schrödinger equation preserves the domain	11
5	Exercise Sheet 5	12

5.1	Exercise 1 - Well-posedness of standard deviation	12
5.2	Exercise 2 - Operator norm of multiplication by a sequence	12
5.3	Exercise 3 - No solutions for too low energy in the potential well (complement to the class)	12
5.4	Exercise 4 - Odd solutions to the potential well (complement to the class)	12
6	Exercise Sheet 6	13
6.1	Exercise 1 - A preserves a space, A^* preserves the orthogonal	13
6.2	Exercise 2 - Inverse of the adjoint of an invertible	13
6.3	Exercise 3 - Creation, annihilation and number	13
6.4	Exercise 4 - Operator norm of multiplication for a function	13
7	Exercise Sheet 7	15
7.1	Exercise 1 - Application of the UBP to the dual space	15
7.2	Exercise 2 - Projection valued measures	15
7.3	Exercise 3 - $[A, B] = 0 \Rightarrow [f(A), B] = 0$	15
7.4	Exercise 4 - Norm and spectral radius	15
8	Exercise Sheet 8	16
8.1	Exercise 1 - Commuting operators and invertibility	16
8.2	Exercise 2 - An operator with a closed extension is closable	16
8.3	Exercise 3 - Explicit norm of resolvent operator	16
8.4	Exercise 4 - The delta is not a closable operator	16
9	Exercise Sheet 9	17
9.1	Exercise 1 - Hardy inequality	17
9.2	Exercise 2 - The Coulomb hamiltonian is self-adjoint	17
9.3	Exercise 3 - The square root is monotonous	18
9.4	Exercise 4 - Exercise on norm of the resolvent	18
10	Exercise Sheet 10	19
10.1	Exercise 1 - The generator of the translation is the momentum	19
10.2	Exercise 2 - Condition for self-adjointness (complement to the class)	19

10.3 Exercise 3 - Unitary operators as exponentials	19
10.4 Exercise 4 - Bogoliubov diagonalization - part I	19
11 Exercise Sheet 11	21
11.1 Exercise 1 - Double Harmonic oscillator	21
11.2 Exercise 2 - Normal matrices polynomials	21
11.3 Exercise 3 - Spectral measure of the laplacian	21
11.4 Exercise 4 - Bogoliubov diagonalization - part II	21

1 Exercise Sheet 1

1.1 Exercise 1 - Examples of Fourier transforms

a Consider the function $f \in L^1(\mathbb{T})$ defined as the periodization of

$$f(x) := x(2\pi - x). \quad (1)$$

Calculate the Fourier coefficients of f and use them to prove that

$$\sum_{k=0}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}. \quad (2)$$

b Let σ be a positive real number and $\mathbf{v}, \mathbf{u} \in \mathbb{R}^d$. Consider the function $g_{\sigma, \mathbf{v}, \mathbf{u}}$ in the space $L^2(\mathbb{R}^d)$ with $d \in \mathbb{N}$ defined as

$$g_{\sigma, \mathbf{v}, \mathbf{u}}(\mathbf{x}) := \left(\frac{\sigma}{\pi}\right)^{\frac{d}{4}} e^{-\frac{\sigma}{2}|\mathbf{x}-\mathbf{v}|^2 + i\mathbf{u} \cdot \mathbf{x}}. \quad (3)$$

Then prove that $\hat{g}_{\sigma, \mathbf{v}, \mathbf{u}} = e^{i\mathbf{v} \cdot \mathbf{u}} g_{\sigma^{-1}, \mathbf{u}, -\mathbf{v}}$, i.e.

$$\mathcal{F} \left[\left(\frac{\sigma}{\pi}\right)^{\frac{d}{4}} e^{-\frac{\sigma}{2}|\mathbf{x}-\mathbf{v}|^2 + i\mathbf{u} \cdot \mathbf{x}} \right] (\mathbf{k}) = \left(\frac{1}{\sigma\pi}\right)^{\frac{d}{4}} e^{-\frac{1}{2\sigma}|\mathbf{k}-\mathbf{u}|^2 - i\mathbf{u} \cdot (\mathbf{k}-\mathbf{v})}. \quad (4)$$

1.2 Exercise 2 - Properties of operator norm and definition of boundedness (complement to the exercise session)

Consider V_1 and V_2 two normed vector spaces over¹ \mathbb{F} and $T : V_1 \rightarrow V_2$ a linear mapping. Define $\|T\|_{V_1, V_2}$ as

$$\|T\| := \sup_{v \in V_1, v \neq 0} \frac{\|Tv\|}{\|v\|}. \quad (5)$$

¹Here and in the following \mathbb{F} can be chosen to be either \mathbb{R} or \mathbb{C} .

For a generic linear mapping T we have $\|T\| \in [0, +\infty]$. Prove that

$$\|T\| = \sup_{v \in V_1, \|v\|_{V_1}=1} \|Tv\| \quad (6)$$

$$= \sup_{v \in V_1, \|v\|_{V_1} \leq 1} \|Tv\|. \quad (7)$$

Prove moreover that the following are equivalent

a T is continuous.

b T is continuous in 0, meaning that for any sequence $\{v_n\}_{n \in \mathbb{N}} \subseteq V_1$,

$$v_n \rightarrow 0 \implies Tx_n \rightarrow 0. \quad (8)$$

c The quantity $\|T\|$ is finite, meaning that $\|T\| < +\infty$.

1.3 Exercise 3 - Young Inequality

Consider $p, q, r \in [1, +\infty]$ such that

$$\frac{1}{q} + \frac{1}{r} = 1 + \frac{1}{p}. \quad (9)$$

Let $f \in L^q(\mathbb{R}^d)$, $g \in L^r(\mathbb{R}^d)$; prove that

$$\|f * g\|_p \leq \|f\|_q \|g\|_r. \quad (10)$$

Hint: Consider the functions α, β, γ defined as

$$\alpha(\mathbf{x}, \mathbf{y}) := |f(\mathbf{y})|^q |g(\mathbf{x} - \mathbf{y})|^r, \quad (11)$$

$$\beta(\mathbf{y}) := |f(\mathbf{y})|^q, \quad (12)$$

$$\gamma(\mathbf{x}, \mathbf{y}) := |g(\mathbf{x} - \mathbf{y})|^r, \quad (13)$$

notice that

$$|f * g(\mathbf{x})| \leq \int_{\mathbb{R}^d} \alpha(\mathbf{x}, \mathbf{y})^{\frac{1}{p}} \beta(\mathbf{y})^{\frac{p-q}{pq}} \gamma(\mathbf{x}, \mathbf{y})^{\frac{p-r}{pr}} d\mathbf{y} \quad (14)$$

and that

$$\frac{1}{p} + \frac{p-q}{pq} + \frac{p-r}{pr} = 1 \quad (15)$$

to apply Hölder inequality.

1.4 Exercise 4 - Fourier transform and sinc

a Prove that there exists a positive real number C such that we have

$$\sup_{0 \leq a < b < +\infty} \left| \int_a^b \frac{\sin x}{x} dx \right| \leq C. \quad (16)$$

Hint: Consider the function

$$F(t) := \int_0^\eta e^{-tx} \frac{\sin x}{x} dx. \quad (17)$$

Deduce a bound on $F'(t)$ uniform in η . Apply the fundamental theorem of calculus for $F(0)$ to conclude.

b Consider an odd function $f \in L^1(\mathbb{R})$. Prove that for any such function we have

$$\sup_{0 \leq a < b < +\infty} \left| \int_a^b \frac{\hat{f}(k)}{k} dk \right| \leq \frac{C}{(2\pi)^{\frac{d}{2}}} \|f\|_1. \quad (18)$$

c Let $g(k)$ be a continuous odd function on the line such that is equal to $1/\log k$ for any $k \geq 2$. Prove that there cannot be an $L^1(\mathbb{R})$ function whose Fourier transform is g .

2 Exercise Sheet 2

2.1 Exercise 1 - Fourier transform and convolution

Let $f, g \in \mathcal{S}(\mathbb{R}^d)$. Recall that in class we proved

$$\widehat{f * g} = (2\pi)^{\frac{d}{2}} \widehat{f} \widehat{g}. \quad (19)$$

Prove that

$$\widehat{f * g} = (2\pi)^{\frac{d}{2}} \widehat{f} \widehat{g}. \quad (20)$$

Hint: Consider the equivalent statement of (19) for the inverse of the Fourier transform and apply it to $\widehat{f} \widehat{g}$.

2.2 Exercise 2 - Unique projector (complement to the class)

Let \mathcal{H} be an Hilbert space and V a closed linear subspace of \mathcal{H} .

a In class we proved that for any $f \in \mathcal{H}$ there exists an element $g_f \in V$ such that

$$\|f - g_f\| = \min_{h \in V} \|f - h\|. \quad (21)$$

Prove that g_f is the unique element of V that satisfies the minimum.

b In class we proved that g_f is such that $f - g_f \in V^\perp$. Prove that there is no other element $h \in V$ such that $f - h \in V^\perp$.

2.3 Exercise 3 - Hilbert space basis with Hahn-Banach

Let \mathcal{H} be an Hilbert space. Prove that there exists a basis for \mathcal{H} . Prove moreover that \mathcal{H} is separable if and only if there exists a countable base for it.

Hint: For the first part apply Zorn's Lemma to the set of (also infinite) orthonormal systems ordered by inclusion. Prove that any maximal orthonormal system is a base, i.e. is dense.

For the second part prove and use the following fact: if f is an element of \mathcal{H} and S is a basis for \mathcal{H} , there exists a sequence of elements $\{e_n\}_{n \in \mathbb{N}} \subseteq S$ such that $f \in \overline{\text{span}_{\mathbb{K}} \{e_n\}_{n \in \mathbb{N}}}$.

2.4 Exercise 4 - Property of the adjoint (bounded operators)

Let A, B bounded operators on an Hilbert space \mathcal{H} and $\alpha, \beta \in \mathbb{C}$. Prove the following equalities:

$$\text{id}^* = \text{id} \quad (22)$$

$$(A^*)^* = A \quad (23)$$

$$(AB)^* = B^*A^* \quad (24)$$

$$(\alpha A + \beta B)^* = \bar{\alpha}A^* + \bar{\beta}B^*. \quad (25)$$

Moreover, prove that A^* is bounded and that $\|A^*\| = \|A\|$.

3 Exercise Sheet 3

3.1 Exercise 1 - Properties of orthogonal projectors

Let \mathcal{H} be a Hilbert space. Let V any closed subspace of \mathcal{H} ; recall the definition of V^\perp as

$$V^\perp := \{f \in \mathcal{H} \mid \langle g, f \rangle = 0 \ \forall g \in V\}. \quad (26)$$

We saw in class that the Hilbert space \mathcal{H} can be decomposed as $\mathcal{H} = V \oplus V^\perp$, meaning that $V \cap V^\perp = \{0\}$ and that for any non-zero $f \in \mathcal{H}$ there exists a unique element $f_V \in V$ such that $f - f_V \in V^\perp$. Define $P_V f := f_V$; from the uniqueness of f_V this is a well defined linear mapping.

- a Prove that $P_V^2 = P_V = P_V^*$.
- b Use a to prove that P_V is bounded and if $V \neq \{0\}$ then $\|P_V\| = 1$.
- c Prove that if V_1 and V_2 are two closed subspaces of \mathcal{H} then²

$$V_1 \perp V_2 \iff P_{V_1} P_{V_2} = 0. \quad (27)$$

3.2 Exercise 2 - Derivative of inner product (complement to the class)

Let $\phi(t)$ and $\psi(t)$ differentiable functions on the Hilbert space \mathcal{H} , meaning that the limit

$$\frac{d\phi}{dt}(t) := \lim_{h \rightarrow 0} \frac{\phi(t+h) - \phi(t)}{h} \quad (28)$$

exists in the norm topology of \mathcal{H} for each $t \in \mathbb{R}$, and similarly for $\psi(t)$.

Prove that

$$\frac{d}{dt} \langle \phi(t), \psi(t) \rangle = \langle \frac{d\phi}{dt}(t), \psi(t) \rangle + \langle \phi(t), \frac{d\psi}{dt}(t) \rangle \quad (29)$$

3.3 Exercise 3 - $\frac{1}{i\hbar} [A, B]$ is self-adjoint

Let \mathcal{H} be a Hilbert space. Consider A and B bounded self-adjoint operators on \mathcal{H} . Prove that $\frac{1}{i\hbar} [A, B]$ is self adjoint.

3.4 Exercise 4 - Properties of the commutator

Consider a vector space V over \mathbb{C} , A, B, C linear bounded operators on V and $\alpha \in \mathbb{C}$.

- a Prove that $[A, B + \alpha C] = [A, B] + \alpha [A, C]$.

²We denote with \perp the condition of two subspaces of an Hilbert space \mathcal{H} of being orthogonal, i.e., V_1 is orthogonal to V_2 , or $V_1 \perp V_2$ if and only if for any $(f, g) \in V_1 \times V_2$ we have $\langle f, g \rangle = 0$.

- b** Prove that $[B, A] = -[A, B]$.
- c** Prove that $[A, BC] = [A, B]C + B[A, C]$.
- d** Prove that $[A, [B, C]] = [[A, B], C] + [B, [A, C]]$.

4 Exercise Sheet 4

4.1 Exercise 1 - Two bounded operator cannot commute in a nontrivial manner

Let \mathcal{H} be an Hilbert space. Let A and B linear operators on \mathcal{H} such that there exists $\alpha \in \mathbb{C} \setminus \{0\}$ such that

$$[A, B] = \alpha \text{id}. \quad (30)$$

Prove that A and B cannot be both bounded.

Hint: Assume both bounded; consider $\|[A, B^n]\|$ and find an absurd.

4.2 Exercise 2 - Fourier transform of the complex gaussian

a Prove that for any $\alpha \in \mathbb{C}$ such that $\operatorname{Re}(\alpha) > 0$,

$$\left(\int_{\mathbb{R}} e^{-\frac{x^2}{2\alpha}} dx \right)^2 = \int_{\mathbb{R}^2} e^{-\frac{x^2+y^2}{2\alpha}} dx dy \quad (31)$$

$$= 2\pi\alpha, \quad (32)$$

where the integral over \mathbb{R}^2 can be evaluated using polar coordinates. Deduce that

$$\int_{\mathbb{R}} e^{-\frac{x^2}{2\alpha}} dx = \sqrt{2\pi\alpha}, \quad (33)$$

where the square root is the one with positive real part.

b For all $B \geq A > 0$ and $\alpha \in \mathbb{C} \setminus \{0\}$ we have

$$\int_A^B e^{-\frac{x^2}{2\alpha}} dx = -\frac{\alpha}{x} e^{-\frac{x^2}{2\alpha}} \Big|_A^B - \int_A^B \frac{\alpha}{x^2} e^{-\frac{x^2}{2\alpha}} dx. \quad (34)$$

Using this, prove that the integral in (33) is convergent for all nonzero α with $\operatorname{Re}(\alpha) \geq 0$, provided the integral is interpreted as a principle value when not absolutely convergent, where the principal value is defined as

$$\operatorname{PV} \int_{\mathbb{R}} f(x) dx := \lim_{R \rightarrow \infty} \int_{-R}^R f(x) dx. \quad (35)$$

c Prove that the result of **a** is also valid for nonzero values of α with $\operatorname{Re}(\alpha) = 0$, at least in the principal value.

Hint: Given $\eta \neq 0$, show that the principal value from A to $+\infty$ of $\exp\left[-\frac{x^2}{2(\gamma+i\eta)}\right]$ is small for large A , uniformly in $\gamma \in [0, 1]$.

d Prove that

$$\frac{1}{2\pi} \operatorname{PV} \int_{\mathbb{R}} e^{ikx} e^{-i\frac{\hbar t}{2m}k^2} dk = \sqrt{\frac{m}{2\pi i\hbar t}} e^{i\frac{m}{2\hbar t}x^2}, \quad (36)$$

where the square root is the one with real positive part.

4.3 Exercise 3 - Counterexample for the closed graph theorem

Consider a separable Hilbert space \mathcal{H} and a complete orthonormal system for it $\{\varphi_n\}_{n \in \mathbb{N}}$. Assume that φ_∞ cannot be written as a finite linear combination of elements of $\{\varphi_n\}_{n \in \mathbb{N}}$. Let D denote the dense linear subspace of \mathcal{H} consisting of all finite linear combinations of elements of $\{\varphi_n\}_{n \in \mathbb{N}}$ and of φ_∞ . On D define the operator $T : D \rightarrow \mathcal{H}$ defined as

$$T \left(\alpha_\infty \varphi_\infty + \sum_{n \in \mathbb{N}} \alpha_n \varphi_n \right) := \alpha_\infty \varphi_\infty. \quad (37)$$

Prove that T is not bounded.

Hint: Use the closed graph theorem.

4.4 Exercise 4 - Free Schrödinger equation preserves the domain

Recall the definition of $H^2(\mathbb{R})$ as

$$H^2(\mathbb{R}) := \left\{ \psi \in L^2(\mathbb{R}) \mid k^2 \hat{\psi} \in L^2(\mathbb{R}) \right\}$$

Recall that in class we defined the map that to any initial datum $\psi_0 \in L^2(\mathbb{R})$ would associate $\psi_t := \tilde{U}_0(t) \psi_0$, defined via the Hamiltonian $H_0 := -\frac{\partial^2}{\partial x^2}$ with domain $\mathcal{D}(H_0) = H^2(\mathbb{R})$. Indeed if $U_0(t) \psi_0$ is defined for any $\psi_0 \in \mathcal{S}(\mathbb{R})$ as the unique solution to

$$\begin{cases} i\hbar \partial_t (U_0(t) \psi_0) = H_0 U_0(t) \psi_0 \\ U_0(t) \psi_0|_{t=0} = \psi_0, \end{cases} \quad (38)$$

then $\tilde{U}_0(t)$ is defined by density on the whole space $L^2(\mathbb{R})$, and coincides with $U_0(t)$ on $\mathcal{S}(\mathbb{R})$.

Prove that if $\psi_0 \in \mathcal{D}(H_0)$ then $\psi_t \in \mathcal{D}(H_0)$.

5 Exercise Sheet 5

5.1 Exercise 1 - Well-posedness of standard deviation

Let ψ be a unit vector in $L^2(\mathbb{R})$ such that $x\psi, x^2\psi \in L^2(\mathbb{R})$. Prove that

$$\langle X^2 \rangle_\psi \geq (\langle X \rangle_\psi)^2, \quad (39)$$

where as we defined in class, X is the operator given by the multiplication by x and

$$\langle A \rangle_\psi := \langle \psi, A\psi \rangle. \quad (40)$$

Hint: Use Jensen inequality.

5.2 Exercise 2 - Operator norm of multiplication by a sequence

Let $\alpha := \{\alpha_n\}_{n \in \mathbb{Z}}$ be a sequence of complex numbers. Consider the Hilbert space of the square integrable functions $\mathfrak{h} := l^2(\mathbb{Z})$. Consider the operator that to the sequence $x := \{x_n\}_{n \in \mathbb{Z}}$ associate the sequence $M_\alpha x = \{\alpha_n x_n\}_{n \in \mathbb{Z}}$.

Suppose that $\|\alpha\|_\infty := \sup_{n \in \mathbb{Z}} |\alpha_n| < +\infty$. Prove that M_α is a well defined linear bounded operator from \mathfrak{h} to itself and prove that $\|M_\alpha\| = \|\alpha\|_\infty$.

5.3 Exercise 3 - No solutions for too low energy in the potential well (complement to the class)

Consider the Hilbert space $\mathfrak{h} := L^2(\mathbb{R})$. And the operator H define

$$\begin{aligned} \mathcal{D}(H) &:= H^2(\mathbb{R}) = \left\{ \psi \in L^2(\mathbb{R}) \mid k^2 \hat{\psi} \in L^2(\mathbb{R}) \right\} \\ H &= -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(X), \end{aligned}$$

where the operator $(V(X)\psi)(x) = V(x)\psi(x)$, with

$$V(x) := \begin{cases} -C & \text{if } |x| \leq A, \\ 0 & \text{if } |x| > A, \end{cases} \quad (41)$$

and with A and C positive constants. Consider $E \in (-\infty, -C]$ and prove that there is no nonzero $\psi_E \in \mathcal{D}(H)$ such that

$$H\psi_E = E\psi_E. \quad (42)$$

5.4 Exercise 4 - Odd solutions to the potential well (complement to the class)

Let \mathfrak{h} , H and $\mathcal{D}(H)$ as in Exercise 3. In class we saw that for any $E \in (-C, 0)$ there is always at least one nonzero even solution ψ_E to the problem $H\psi_E = E\psi_E$.

Prove that if $A\sqrt{2mC}\hbar \leq \frac{\pi}{2}$ there are no nonzero odd solutions, and for larger values of C there is always at least one.

6 Exercise Sheet 6

6.1 Exercise 1 - A preserves a space, A^* preserves the orthogonal

Let V be a closed subspace of \mathcal{H} Hilbert space. Let A be a linear bounded operator on \mathcal{H} such that $A(V) \subseteq V$. Prove that $A^*(V^\perp) \subseteq V^\perp$.

6.2 Exercise 2 - Inverse of the adjoint of an invertible

Let \mathcal{H} be an Hilbert space. Let A be a linear bounded operator on \mathcal{H} with linear bounded inverse A^{-1} . Prove that $(A^{-1})^* A^* = A^* (A^{-1})^* = \text{id}$. Deduce that A^* is invertible and that $(A^*)^{-1} = (A^{-1})^*$.

6.3 Exercise 3 - Creation, annihilation and number

Consider the Hilbert space $\mathcal{H} := \ell^2(\mathbb{N})$.

a Define the operator A as

$$(A\alpha)_n = \alpha_{n+1} \quad \forall n \in \mathbb{N}, \quad (43)$$

for any $\alpha = \{\alpha_n\}_{n \in \mathbb{N}} \in \mathcal{H}$.

Prove that A is a well defined linear bounded operator, find its norm and its spectrum.

b Consider A^* the adjoint of A . Show its explicit action and find its norm and its spectrum.

c Define $B := A^* A$. Prove that B is a self-adjoint operator, show its explicit action and find its norm and its spectrum.

Hint: Recall that if T is a linear bounded operator, the spectrum $\sigma(T)$ is a closed set, $\rho(T) \equiv \mathbb{C} \setminus \sigma(T)$ the resolvent of T is defined as

$$\rho(T) := \left\{ \lambda \in \mathbb{C} \mid (T - \lambda \text{id})^{-1} \text{ is a well-defined, linear, bounded operator} \right\}, \quad (44)$$

and that $\sigma(T) \subseteq \overline{B_{\|T\|}(0)}$, where $B_R(0) := \{\alpha \in \mathcal{H} \mid \|\alpha\|_2 < R\}$.

6.4 Exercise 4 - Operator norm of multiplication for a function

Consider the interval $I = (a, b) \subseteq \mathbb{R}$ and the Hilbert space $\mathcal{H} := L^2(I)$. Consider $\varphi \in C(I)$ a real valued continuous function with $\|\varphi\|_\infty < +\infty$. Consider the operator T_φ defined for any $\psi \in \mathcal{H}$ as

$$T_\varphi \psi(x) := \varphi(x) \psi(x). \quad (45)$$

Prove that T_φ is a well defined linear bounded operator and prove that $\sigma(T_\varphi) = \overline{\varphi(I)}$.

Hint: Show first that $\varphi(I) \subseteq \sigma(T_\varphi)$ and use the fact that the spectrum is closed to show that the same is true for the closures. Next, show that $(\overline{\sigma(T_\varphi)})^c \subseteq \rho(T_\varphi)$ to conclude.

7 Exercise Sheet 7

7.1 Exercise 1 - Application of the UBP to the dual space

Let V be a Banach space and E a nonempty subset of V such that for any $\xi \in V^*$ there exists a finite constant C_ξ such that

$$\sup_{x \in E} |\xi(x)| \leq C_\xi. \quad (46)$$

Prove that E must be bounded.

*Hint: Consider the map $J : V \rightarrow V^{**}$ defined as*

$$[J(x)](\xi) := \xi(x) \quad \forall x \in V, \xi \in V^*. \quad (47)$$

*Prove that $\|J(x)\|_{V^{**}} = \|x\|$ for any $x \in V$. Use the Uniform Boundedness Principle to show that $J(E)$ is bounded and conclude.*

7.2 Exercise 2 - Projection valued measures

Consider (X, Ω) a measurable space (i.e., a set X with a σ -algebra Ω in it), and consider a projection-valued measure with values in \mathcal{H} an Hilbert space. Let $E, F \in \Omega$.

a Prove that if $E \cap F = \emptyset$ then $\text{Ran } \mu(E) \perp \text{Ran } \mu(F)$.

b Prove that $\mu(E)\mu(F)$ is an orthogonal projector and that

$$\text{Ran}(\mu(E)\mu(F)) = \text{Ran } \mu(E) \cap \text{Ran } \mu(F). \quad (48)$$

7.3 Exercise 3 - $[A, B] = 0 \Rightarrow [f(A), B] = 0$

Let \mathcal{H} be an Hilbert space. Let A be a self-adjoint bounded operator over \mathcal{H} . Let B a bounded operator over \mathcal{H} such that $[A, B] = 0$. Consider a bounded complex-valued measurable function f . Prove that $[f(A), B] = 0$.

7.4 Exercise 4 - Norm and spectral radius

Let \mathcal{H} be an Hilbert space. Let T be a bounded operator over \mathcal{H} . We proved in class that in general $R(T) \leq \|T\|$, where

$$R(T) := \sup_{\lambda \in \sigma(T)} |\lambda|. \quad (49)$$

Exhibit an explicit operator such that $R(T) < \|T\|$.

8 Exercise Sheet 8

8.1 Exercise 1 - Commuting operators and invertibility

a Let \mathcal{H} be an Hilbert space. Suppose $A, B \in \mathcal{B}(\mathcal{H})$ with $[A, B] = 0$ and A not invertible. Prove that AB is not invertible.

Hint: Prove first that if AB were invertible then A would have both a left and a right inverse. Then prove that those would need to be equal and conclude.

b Prove that if we do not assume A and B to commute, the result in **a** is false.

8.2 Exercise 2 - An operator with a closed extension is closable

Let \mathcal{H} be an Hilbert space. Let A be an unbounded linear operator on \mathcal{H} . Suppose there exists a closed operator C that extends the operator A . Prove that A is closable.

8.3 Exercise 3 - Explicit norm of resolvent operator

Let \mathcal{H} be an Hilbert space. Let A be self-adjoint.

a Suppose $\lambda_0 \in \rho(A)$, where $\rho(A)$ is the resolvent set of A . Prove that

$$\|(A - \lambda_0 \text{id})^{-1}\| = \frac{1}{d(\lambda_0, \sigma(A))}, \quad (50)$$

where $d(x, Y) := \inf_{y \in Y} |x - y|$, with $x \in \mathbb{C}$, $Y \subseteq C$.

Hint: Think of $(A - \lambda_0 \text{id})^{-1}$ as a function of A in the sense of the functional calculus of A .

b Let $\lambda_0 \in \mathbb{C}$ and suppose that there exists $\varepsilon > 0$ and some nonzero $\psi \in \mathcal{H}$ such that

$$\|A\psi - \lambda_0 \psi\| < \varepsilon \|\psi\|. \quad (51)$$

Prove that there exists $\lambda \in \sigma(A)$ such that $|\lambda - \lambda_0| < \varepsilon$.

8.4 Exercise 4 - The delta is not a closable operator

Let $\mathcal{H} = L^2(I)$, with $I = [0, 1]$. Consider the operator A with domain $D(A) = C(I)$ and with action

$$A\psi(x) = \psi(0), \quad \forall \psi \in D(A). \quad (52)$$

Prove that A is not closable.

9 Exercise Sheet 9

9.1 Exercise 1 - Hardy inequality

Let $k \in \mathbb{Z}$, $d \in \mathbb{N}$, $k + d \neq 0$. Let D be defined as

$$D := \begin{cases} C_c^\infty(\mathbb{R}^d) & \text{if } k \geq 0, \\ C_c^\infty(\mathbb{R}^d \setminus \{\mathbf{0}\}) & \text{if } k \leq -1, \ k + d \neq 0. \end{cases} \quad (53)$$

Prove that for any $\psi \in D$

$$\int_{\mathbb{R}^d} |\mathbf{x}|^k |\psi(\mathbf{x})|^2 d\mathbf{x} \leq \frac{4}{|k+d|^2} \int_{\mathbb{R}^d} |\mathbf{x}|^{k+2} |\nabla \psi(\mathbf{x})|^2 d\mathbf{x}. \quad (54)$$

Hint: Use the fact that

$$|\mathbf{x}|^k = \frac{1}{k+d} \sum_{j=1}^d \frac{\partial}{\partial x_j} (|\mathbf{x}|^k x_j) \quad (55)$$

to integrate by part on the left hand side of (54) and then use the Cauchy-Schwartz inequality.

Remark: Notice that in particular if $k = -2$ (and $d \neq 2$) this implies that as operators

$$\frac{1}{|\mathbf{x}|^2} \leq -\frac{4}{|d-2|} \Delta. \quad (56)$$

A generalisation of this formula is called in the literature the **Hardy inequality**.

9.2 Exercise 2 - The Coulomb hamiltonian is self-adjoint

a Let $\mathcal{H} := L^2(\mathbb{R}^3)$. Define (as in class) the operator H_0 with³

$$\mathcal{D}(H_0) := H^2(\mathbb{R}^3) \equiv \left\{ \psi \in \mathcal{H} \mid |\mathbf{k}|^2 \hat{\psi}(\mathbf{k}) \in L^2(\mathbb{R}^3) \right\}, \quad (57)$$

$$H_0 \psi = -\Delta \psi = \left(|\mathbf{k}|^2 \hat{\psi}(\mathbf{k}) \right)^\vee, \quad \forall \psi \in \mathcal{D}(H_0). \quad (58)$$

Prove that H_0 is closed.

b Let $\mathcal{D}(H) := \mathcal{D}(H_0)$. Define $H := H_0 + \frac{1}{|\mathbf{x}|}$. Prove that H is well-defined and closed. (Assume, if necessary, to know that there exists a positive constant C such that for any $\psi \in H^2(\mathbb{R}^3)$ it holds $\|\psi\|_{L^\infty} \leq C \|\psi\|_{H^2}$).

Hint: Use the fact that $H^2(\mathbb{R}^3) \subseteq L^\infty(\mathbb{R}^3)$ to prove that is well-defined. To prove the closure, use (54) from Exercise 1 to show and subsequently use that $\forall \varepsilon > 0$, $\forall \psi \in \mathcal{D}(H)$

$$\left\| \frac{1}{|\mathbf{x}|} \psi \right\|_{L^2} \leq \frac{2}{\varepsilon} \|\psi\|_{L^2} + \varepsilon \|H_0 \psi\|_{L^2} \quad (59)$$

³Recall that we proved in the exercise session that if $\|\psi\|_{H^2} := \left\| (1 + |\mathbf{k}|^2) \hat{\psi} \right\|_{L^2}$, then $H^2(\mathbb{R}^3)$ is closed with respect to $\|\cdot\|_{H^2}$.

to get that

$$\|H_0\psi\|_{L^2} \leq \frac{2}{\varepsilon(1-\varepsilon)} \|\psi\|_{L^2} + \frac{1}{1-\varepsilon} \|H\psi\|_{L^2}. \quad (60)$$

c Prove that H is symmetric.

d Prove that H is self-adjoint.

Hint: Use the fact that $\frac{1}{|x|}$ is a self-adjoint operator and apply the Kato-Rellich theorem.

9.3 Exercise 3 - The square root is monotonous

Let \mathcal{H} an Hilbert space and let $A, B \in \mathcal{B}(\mathcal{H})$, $A^* = A$, $B^* = B$

a Suppose⁴ $A \geq \text{id}$; prove that A is invertible with $A^{-1} \in \mathcal{B}(\mathcal{H})$ and that $0 \leq A^{-1} \leq \text{id}$.

b Suppose $0 \leq A \leq B$; prove that for any $\lambda > 0$, $A + \lambda \text{id}$ and $B + \lambda \text{id}$ are invertible with $(A + \lambda \text{id})^{-1}, (B + \lambda \text{id})^{-1} \in \mathcal{B}(\mathcal{H})$ and that we have $(B + \lambda \text{id})^{-1} \leq (A + \lambda \text{id})^{-1}$.

c Suppose $0 \leq A \leq B$; prove that $\sqrt{A} \leq \sqrt{B}$.

Hint: Prove and use the fact that

$$\sqrt{x} = \frac{1}{\pi} \int_0^{+\infty} \frac{1}{\sqrt{\lambda}} \left(1 - \frac{\lambda}{x+\lambda} \right) d\lambda, \quad \forall x \geq 0. \quad (61)$$

9.4 Exercise 4 - Exercise on norm of the resolvent

Let \mathcal{H} be an Hilbert space. Let A be a linear self-adjoint operator on \mathcal{H} with $A \geq 0$ and $\lambda > 0$. Denote with $\|\cdot\|$ the operator norm and with $\|\cdot\|_{\mathcal{H}}$ the norm induced by the inner product in the Hilbert space \mathcal{H} .

a Prove that $\|(A + \lambda \text{id})^{-1}\| \leq 1/\lambda$.

b Prove that for all $\psi \in \mathcal{H}$,

$$\|\psi\|_{\mathcal{H}}^2 \geq \|A(A + \lambda \text{id})^{-1}\psi\|_{\mathcal{H}}^2 + \lambda^2 \|(A + \lambda \text{id})^{-1}\psi\|_{\mathcal{H}}^2. \quad (62)$$

Conclude that $\|A(A + \lambda \text{id})^{-1}\| \leq 1$.

⁴Recall that $A \geq 0$ if for any $\psi \in \mathcal{D}(A)$, $\langle \psi, A\psi \rangle \geq 0$ and that $A \geq B$ if $A - B \geq 0$.

10 Exercise Sheet 10

10.1 Exercise 1 - The generator of the translation is the momentum

Let $\mathcal{H} := L^2(\mathbb{R})$ and $P := -i\partial_x$ the momentum operator defined on the domain $\mathcal{D}(P) := H^1(\mathbb{R})$ as $P\psi(x) = -i\frac{\partial\psi}{\partial x}(x)$. Consider for any $\lambda \in \mathbb{R}$ the bounded operator T_λ defined for any $\psi \in \mathcal{H}$ as $T_\lambda\psi(x) = \psi(x - \lambda)$.

Prove that $\{T_\lambda\}_{\lambda \in \mathbb{R}}$ is a strongly continuous one-parameter unitary group and that

$$T_\lambda = e^{i\lambda P} = e^{\lambda\partial_x}. \quad (63)$$

10.2 Exercise 2 - Condition for self-adjointness (complement to the class)

Let \mathcal{H} be an Hilbert space, A a symmetric operator and $\mu > 0$ a positive real number. Prove that the following are equivalent.

- a** A is self-adjoint.
- b** $\text{Ran}(A + i\mu \text{id}) = \text{Ran}(A - i\mu \text{id}) = \mathcal{H}$.

10.3 Exercise 3 - Unitary operators as exponentials

Let \mathcal{H} be an Hilbert space. Let $U \in \mathcal{B}(\mathcal{H})$. Prove that U is unitary if and only if there exist a self-adjoint operator A on \mathcal{H} such that $U = e^{iA}$.

10.4 Exercise 4 - Bogoliubov diagonalization - part I

Let \mathcal{H} be an Hilbert space and $A_+, A_- \in \mathcal{B}(\mathcal{H})$ such that

$$[A_\pm, A_\pm^*] = \text{id}, \quad (64)$$

$$[A_+, A_-] = [A_+, A_-^*] = 0. \quad (65)$$

Let moreover $\eta, \zeta \in \mathbb{R}$, with $\eta > \zeta \geq 0$. Define

$$H := \eta (A_+^* A_+ + A_-^* A_-) + \zeta (A_+^* A_-^* + A_+ A_-). \quad (66)$$

- a** Prove that H is self-adjoint.
- b** Prove that there exist operators C_\pm and numbers $\alpha, \beta \in \mathbb{R}$ such that

$$[C_\pm, C_\pm^*] = \text{id}, \quad (67)$$

$$[C_+, C_-] = [C_+, C_-^*] = 0, \quad (68)$$

$$H = \alpha (C_+^* C_+ + C_-^* C_-) + \beta. \quad (69)$$

Hint: Define

$$C_{\pm} := \gamma_{\pm} A_{\pm} + \xi_{\pm} A_{\mp}^* \quad (70)$$

for some $\gamma_{\pm}, \xi_{\pm} \in \mathbb{R}$. Use (67) and (68) to deduce that $\gamma_+ = \gamma_-$, $\xi_+ = \xi_-$ and that $\gamma_{\pm}^2 - \xi_{\pm}^2 = 1$. Calculate $C_{\pm}^ C_{\pm}$ and deduce (69).*

11 Exercise Sheet 11

11.1 Exercise 1 - Double Harmonic oscillator

Let $\mathcal{H} = L^2(\mathbb{R}^2)$. Let \tilde{H} be defined as

$$\tilde{H} := -\frac{1}{2}(\Delta_x + \Delta_y) + \frac{1}{2}(x^2 + y^2) - \lambda xy \quad (71)$$

with $D(\tilde{H}) = C_c^\infty(\mathbb{R}^2)$.

Prove that if $\lambda \in (-1, 1)$ then \tilde{H} is essentially self adjoint and study the spectrum of the closure of \tilde{H} .

Hint: Prove that, with the right change of variables $(x, y) \rightarrow (w, z)$, $\tilde{H} = H_w + H_z$ with H_w only depending on w and H_z only depending on z .

11.2 Exercise 2 - Normal matrices polynomials

Let A be a normal matrix (meaning that $AA^* = A^*A$) and p a polynomial in two variables. Show by example that an eigenvector for $p(A, A^*)$ is not necessarily an eigenvector for A .

Remark: Even if eigenvectors of $p(A, A^*)$ do not correspond to eigenvectors of A , the spectrum does, in the sense that

$$\sigma(p(A, A^*)) = \{p(\lambda, \lambda^*) \mid \lambda \in \sigma(A)\}. \quad (72)$$

11.3 Exercise 3 - Spectral measure of the laplacian

Let $I := [0, 1]$ and consider $\mathcal{H} = L^2(I)$. Define the operator $H := -\Delta$ with domain⁵ $D(H) := H^2(I) \cap C_{\text{per}}^1(I)$. Prove that H is self-adjoint and exhibit its spectral measure explicitly.

11.4 Exercise 4 - Bogoliubov diagonalization - part II

Let \mathcal{H} be an Hilbert space and $A_+, A_- \in \mathcal{B}(\mathcal{H})$ such that

$$[A_\pm, A_\pm^*] = \text{id}, \quad (73)$$

$$[A_+, A_-] = [A_+, A_-^*] = 0. \quad (74)$$

Let moreover $\eta, \zeta \in \mathbb{R}$, with $\eta > \zeta \geq 0$. Define

$$H := \eta(A_+^* A_+ + A_-^* A_-) + \zeta(A_+^* A_-^* + A_+ A_-). \quad (75)$$

⁵This definition makes sense, because we know that for any function $\psi \in H^2(I)$ we have that there is a function $\tilde{\psi} \in C^1(I)$ that coincides almost everywhere with ψ . The definition of the domain is then the set of functions $\psi \in H^2(I)$ such that the function $\tilde{\psi}$ is periodic with derivative which is periodic.

Recall that if $\theta = \frac{1}{2} \operatorname{arctanh} \left(\frac{\zeta}{\eta} \right)$, $\alpha = \sqrt{\eta^2 - \zeta^2}$, $\beta = \sqrt{\eta^2 - \zeta^2} - \eta$ and C_+ and C_- are defined as

$$C_{\pm} := \cosh(\theta) A_{\pm} + \sinh(\theta) A_{\mp}^* \quad (76)$$

we get

$$[C_{\pm}, C_{\pm}^*] = \operatorname{id}, \quad (77)$$

$$[C_+, C_-] = [C_+, C_-^*] = 0, \quad (78)$$

$$H = \alpha (C_+^* C_+ + C_-^* C_-) + \beta. \quad (79)$$

a Consider $X := A_+^* A_-^* - A_+ A_-$. Prove that X is skew-adjoint, meaning that $X^* = -X$.

b For any $t \in \mathbb{R}$ consider $U(t) := e^{-tX}$. Prove that $\{U(t)\}_{t \in \mathbb{R}}$ is a strongly continuous one-parameter unitary group such that

$$U(t) A_{\pm} U(-t) = \cosh(t) A_{\pm} + \sinh(t) A_{\mp}^*. \quad (80)$$

Hint: Consider for any $\psi, \varphi \in \mathcal{H}$ the function $f : \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$f_{\pm}(t) := \langle \psi, U(t) A_{\pm} U(-t) \varphi \rangle. \quad (81)$$

Prove that f satisfies a closed second order differential equation and deduce (80).

c Suppose that there is a complete orthonormal system $\{\varphi_n\}_{n \in \mathbb{N}}$ for \mathcal{H} such that $A_{\pm}^* A_{\pm} \varphi_n = \epsilon_n^{\pm} \varphi_n$, with $\epsilon_n^{\pm} \in \mathbb{R}$. Prove that there exist a complete orthonormal system $\{\psi_n\}_{n \in \mathbb{N}}$ for \mathcal{H} such that

$$H \psi_n = [\alpha (\epsilon_n^+ + \epsilon_n^-) + \beta] \psi_n. \quad (82)$$